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TECHNICAL MEMORANDUM

A TRANSIENT RESPONSE ANALYSIS OF THE SPACE SHUTTLE

VEHICLE DURING LIFTOFF

I. INTRODUCTION

The development of analytical tools for the design and analysis of complex structures has

been a great achievement for structural engineers over the past 3 decades. With the advent of the

computer age, new numerical analysis techniques have evolved utilizing the well-known finite

element method. These techniques have developed into good representations for modeling the struc-

tural characteristics of complex structures; however, the models of today's complex structures can

have several thousand degrees-of-freedom (DOF). These large models, therefore, become impracti-

cal to analyze on present-day computers from a monetary and computational sense. The problem

concerned in this report is the liftoff dynamic transient response analysis of the space shuttle

vehicle. The dynamic transient interaction between the launch pad and the space shuttle vehicle is a

very complex phenomenon and requires detailed modeling of its structural components. This leads

to models with thousands of DOF that represent the space shuttle vehicle. In order to analyze the

liftoff event, the space shuttle models are reduced using component mode synthesis (CMS)

methods. It is typical during liftoff that the maximum internal loads occur on the vehicle. These

maximum internal loads on the space shuttle are a result of changing boundary Conditions over a

very short time span. The reduced model of the space shuttle, therefore, has an important effect on

the accuracy of the computed internal loads. This report proposes a method which will compute the

iiftoff transient response of the space shuttle vehicle from its launch pad using a set of reduced

models. The method is proposed to reduce the amount of computer cost of each liftoff analysis

since there are over 300 individual sets of forcing environments that must be analyzed for each

flight. The proposed method will be verified by comparing results with an iterative method used by

Martin Marietta. The effects of the reduced CMS models used in the proposed analysis will be
studied.

A. General Background

A structure with an infinite number of DOF is approximated by a finite number of DOF by

using the finite element method. This approach offers a very good approximation when a reason-

able number of DOF are retained in the structure's model. Of course, the more DOF a model has

the more time consuming it is to analyze on a computer. The finite element formulation of a struc-

ture results in a set of coupled second-order matrix differential equations. The differential equations

which represent the equations of motion of the structure can be solved by a number of numerical

techniques. One approach is to numerically integrate the equations of motion. This may be imprac-

tical for models with several thousand DOF and limited computer resources. Another approach

would be to use normal coordinates by solving the eigenvalue problem for the undamped and free

motion. A reduction of the model could be performed through truncation of the vibrational modes.

The normal coordinates have the advantage of uncoupling the differential equations. This approach



loses its effectiveness if the size of the structural model is so large that it becomes impractical

from a computational sense. Research in the area of vibration analysis of large order systems [1-3]

has overcome some of these difficulties; however, researchers are continually searching for

improvements. Another reduction "technique referred to as static condensation, or Guyan reduction,

is commonly applied to large size models. The method was originally developed for the reduction

of the stiffness matrix and was extended to the mass matrix by Guyan [4]. This reduction tech-

nique reduces those DOF that are not signit'icant for the dynamic analysis being performed (e.g.,

massless DOF). Proper selection of the DOF is required for accurate results. A model reduction

technique which uses both the static condensation method in combination with an eigenvalue analy-
sis is referred to as CMS method. There are a number of variations associated with CMS [5-12].

Recent research works [! 3-17] have shown that Lanczos vectors can be used as an efficient tool

lor CMS. The research has demonstrated that accurate results can be obtained for some small struc-

tural models. A reduction of large finite element models (i.e., equations of motion) must be

accomplished before a transient response analysis can be performed. Therefore, the method used to

reduce the structural models is important in both computational work and accuracy of solutions.

One objective of this report will be to determine if the Lanczos CMS method can be used effec-

tively on large complex structural models as compared to the Craig and Bampton CMS method.

The space shuttle liftoff vehicle model will be used as an example.

The liftoff phase of an aerospace vehicle is a critical time period, because some of the max-

imum internal loads occur during this time. Several methods exist which have demonstrated accept-

able accuracy and efficiency for the liftoff transient response analysis [18-22]. One method uses a

Runge-Kutta numerical integration scheme used on the Titan rocket and reformulated for the space

shuttle by Blejwas of Martin Marietta [18]. The boundary stiffness matrix of the vehicle is coupled

to a stiffness matrix representing the launch pad. As the vehicle lifts off the launch pad, the

interface loads between the vehicle and pad go from compression to tension. When this occurs, the

introduced stiffness matrix between the vehicle and pad is reduced out and a new stiffness matrix

is instituted. Thus, the vehicle is transformed from being in a fixed-boundary condition state to a

free-flight environment. Another method proposed by White and Bodley of Martin Marietta [19]

uses Lagrange multipliers in the formulation of equations of motion. These Lagrange multipliers,

which represent the boundary forces, couple the vehicle equations of motion to the launch pad

equations of motion. The Lagrange multipliers are determined iteratively at each time step of

numerical integration. Once the Lagrange multipliers are determined for that time step, the

corresponding response at that time step can be computed. During the separation phase of the

analysis, the Lagrange multipliers are zeroed out as the vehicle lifts off the launch pad. A method

proposed by Olberding [20] uses a coupling stiffness matrix between the vehicle and the pad. The

coupling stiffness, when multiplied by the boundary displacements, represents the contact forces.

The equations of motion are integrated using a numerical integration algorithm (Runge-Kutta or

muitistep), and the coupling stiffness matrix is modified as the vehicle lifts off. A different itera-

tive method by Prabhakar [21] of Martin Marietta also uses a coupling stiffness matrix between the

vehicle and pad. The coupling stiffness matrix is representative of the actual holddown studs used

on the space shuttle. The contact forces are solved iteratively over one time step. They are then

used to solve for the total response over that time step. During liftoff the coupling stiffness is

modified allowing the vehicle free flight. The iterative method by Prabhakar [21] will be presented

in detail later and will be used in comparison studies in this report.

2



B. Description of Space Shuttle Liftoff Release Mechanism

The transient response analysis of the space shuttle from the mobile launch platform (MLP)

is performed after modifying the proposed transient response algorithm to include changes in

boundary conditions. Figure 1 shows the space shuttle vehicle mounted to the MLP. The space

shuttle liftoff vehicle is composed of two solid rocket boosters (SRB's), an external tank (ET), and

the orbiter vehicle. The space shuttle vehicle is fixed to the MLP through the SRB aft skirts at

eight points of contact. One of these connections is shown in figure 2. These eight points are

shown relative to one another on the MLP in figure 3. Three DOF (X, Y, and Z directions) are

retained for each one of these contact points, therefore, a total of 24 DOF are used to connect the

liftoff vehicle to the MLP. Some assumptions have been made for the complex release mechanism

of the space shuttle from the MLP, such as no frictional loads, lateral force feedback dynamics,

bolt hangup mechanisms, or interface moment loads, etc., in the transient response analysis. The

release mechanism employed on the space shuttle vehicle and MLP begins with the ignition of the

SRB's. A signal is sent to the eight contact detonators after SRB ignition. The detonators then

separate the eight flangible nuts (see fig. 2). These nuts are captured in blast containers. Holddown

studs then drop into the MLP support posts due to gravity, and the vehicle lifts off from the MLP.

This all occurs in about 0.25 s after SRB ignition. To simulate this effect in the transient response

analysis, the interface axial forces are monitored after SRB ignition at each time step of 0.001 s.

As soon as the interface axial forces became greater than zero, the constraint equations were

modified which resulted in the axial and lateral forces at that contact point going to zero. This is

accomplished independently for all eight contact points until the vehicle is separated from the pad.

Recontact is not treated in the analysis.

C. Proposed Method

This report proposes a method which incorporates the effects of changing boundary con-

ditions with a transient response analysis [23]. The proposed method uses substructures that are

coupled together through interface boundary forces. The boundary forces are approximated by a

power series in time with unknown coefficients. The equations of motion of the substructures are

solved with unknown coefficients at each time step. The unknown coefficients are obtained by
enforcing the compatibility equations of the substructure interfaces. The unknown coefficients can

be obtained by a simple matrix multiplication. Once the unknown coefficients are computed, the

total response is computed for that time step. Since the compatibility of the substructure's boundary

is satisfied at each time step. the changing of boundary conditions can be easily managed by zero-

ing out the compatibility matrix as a change in constraints occurs.

D. Objectives

The objectives of this report are to formulate, program, and verify the proposed method lor

its use in the liftoff analysis of the space shuttle vehicle using reduced models. The proposed

method will be verified by comparing results with the latest iterative method used by Martin

Marietta Corporation. The amount of computer time it takes to pertbrm the liftoff analysis is one

important criterion lbr the evaluation of an analysis method. Two CMS methods to reduce the

structural models will be studied using the proposed approach for dynamic response. One method
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(termed the Lanczos CMS method), which has been used very effectively on small structural

models in recently published references, will be applied to the larger, more complex finite element

model of the space shuttle vehicle. The other method (Craig and Bampton) has been used exten-

sively and will serve as a base for comparison.

II. GOVERNING EQUATIONS

The most ardent chore for a dynamic problem is in the formulation of the mathematical

model leading to the equations of motion. One way of doing this is through the use of the finite

element method. The finite element method can be thought of as a mathematical idealization of the

structure's mass, damping, and stiffness. The equations of motion of a structure are a set of linear

second-order differential equations. Writing these differential equations in matrix notation, one has:

[MI + [C] {,} + [Xl {x} = {F} (1)

where [M], [C], and [K] are the mass, damping, and stiffness matrices. When a computer is used

to solve equation (1) numerically, the size of the system is a major concern. Reduction and/or

uncoupling of equation (I) may be necessary depending on the amount of computer capacity and/or

computer time that is available for the task undertaken. One commonly used approach is to break

the structure into individual substructures. The substructures can then be reduced using a CMS

method [5-12]. The reduced substructures are then rejoined together into a total structural model.

This is often done where computer memory capacity is a problem. An example of this would be

the space shuttle liftoff model which is comprised of the separate finite element models of the
orbiter, ET, and two SRB's.

In this section, the Craig and Bampton CMS method used to reduce equation (1) will be

presented. This is followed by a description of the Lanczos CMS method which can also be used

in reducing equation (1). Next, the iterative transient response method of Prabhakar [21] will be

presented. Finally, the proposed transient response method will be formulated.

A. CMS Method

There are several variations of the CMS method which have been developed [5-12]. One of

the more versatile and efficient methods was developed in 1968 by Craig and Bampton [7]. The

method has been widely used in structural analysis for reducing finite element models, and it can

be easily used on substructures with both determinate and indeterminate interface connections. A

brief summary of this method is presented here and the reader is referred to the references for
other variations of the CMS method.

Neglecting damping for now, the mass and stiffness matrices of equation (1) can be

arranged into interior and boundary coordinates. The equations of motion can then be written as:

7



,,, mq ,_j LK,,,K,,d (,,, p,,
(2)

where i refers to the interior DOF and b refers to the boundary DOF. Normally, the interior DOF

are much larger than the boundary DOF. The Craig and Bampton (CB) method incorporates the

Guyan reduction [4] technique discussed earlier with the normal modes computed from the

equations of motion of the interior coordinates. Neglecting inertial forces in equation (2) and set-

ting {Fi} equal to zero one has:

bi KbbJ Xb Fh

Solving the top set of equations for {x;}, a transformation can then be written as:

(3)

= {_1,}= {xi,}
Xb

(4)

This transformation is referred to as static condensation or Guyan reduction where the interior coor-

dinates are expressed in terms of boundary coordinates. If the normal modes are computed for the

top set of equations in equation (2), a transformation using the normal modes and the Guyan trans-

formation can be formed. This transformation can be expressed as:

where

x,. Lo {x,,j x.j

,,c,,o]
{q,} = the n generalized coordinates corresponding to [_,,]

It|),,] = the n normal modes from the eigen analysis of the interior coordinates

n = the number of normal modes that are kept based on a given cutoff frequency, n<-i

[G] =-[Kii]-I[Kit,] = the constraint modes due to the Guyan reduction [4].

(5)



Substituting the [TcB] transformation of equation (5) into equation (2) and premultiplying equation

(2) by the transpose of [TcB], a set of reduced equations of motion of the structure or substructure
is obtained in the form:

i0.1iq l[Mcsl + [Kcnl = [Tcnlr{F} , (6)

J?A Xh

where

r-1iqq gqb

[Mcn] = [Tcn]r[M][TcB] =

oj[Kc_l = [TcBIr[KI[TcB] = E_

and

[[qq] = unity matrix

[Mqb] = [dP,]r[Mii][G] + [dPn]r[Mib]

IMbq] = [G]rlMii][_,,] + [Mibl[_n]

[Mbb] = [G]r[Mii][G] + [G]r[Mib] + [Mbi][G] + [Mbb]

[tO2] = diagonal matrix of square of frequency

[K_,b] = [G]T[Kii][G] + [G]r[Kib] + IKbi][G] + [Khb]

The reduction of the equations of motion are formulated by using the truncated normal modes [_,,].

This introduces some additional approximations into the model with respect to truncated normal

modes. However. knowing the frequency content of the applied forces one can make an appropriate

selection of the number of normal modes to keep. This will result in a good approximation of the

structural dynamic loads from the transient response. It should be noted that the equations of

motion "are now in both modal and discrete coordinates, q,, and x/,.

9



B. Lanczos Vectors

The use of Lanczos vectors in the CMS formulation has gained much attention recently

because of its less expensive solution time as compared to the eigenvalue problem normally used in

CMS. Some simple structures have been tested: these studies have shown that very few Lanczos

vectors are needed for good results. In trangient response analysis, a major portion of computer

time is spent on the reduction of the finite element models. Therefore, it is obvious that if the

Lanczos vectors work for a complex structural model a substantial savings in computer time can be

obtained,

The paper by Ojalvo [I 3] gives a brief history of the origin of the Lanczos vectors. Several

other papers present various methods of implementing the Lanczos vectors into a reduction trans-

formation [14-17]. The formulation and computational procedure used to compute the Lanczos

vectors for this research are taken from the paper by Allen [16].

Lanczos vectors have similarity to the Ritz-type vector formulation. The first Lanczos vector

is the static solution of the interior DOF to an applied interior force _}. The force _-} is either a

unit applied force or can be a randomly generated force vector with values between zero and unity.

This is expressed as:

{L'i}, = [Kii]-I{ti}. (7)

This vector is then normalized with respect to the interior mass matrix,

{L*i} I

= (8)

The next k Lanczos vectors {L,}x are then computed using the recurrence relationship of:

{L*,}/. = [Kii] -t [Mii]{Li}k_ I , (9)

and

/,-I

{L,}, = {L*,},-Z. , (lO)

10



where

k = 2 .... ,n number of Lanczos vectors n<_i

cj = {Li}_[Miil{L*i}_

Once the Lanczos vector is computed it is then normalized with respect to the interior mass matrix

as shown in equation (8). The number of Lanczos vectors to be generated will be less than or

equal to the size of stiffness matrix, which in this case is i. After the n Lanczos vectors are

generated they are assembled into the matrix [L,,] and used in a Lanczos transformation matrix. The

Lanczos transformation matrix can be expressed as:

IXilx:E:;]lqlx,: Iq (11)

where

{q,,} = the n generalized coordinates corresponding to [L,,]

[L,,] = the n Lanczos vectors, n<_i

IG] = -[Kii]-_[Kil,] = the constraint modes due to the Guyan reduction [4].

The formulation of the Lanczos CMS vector transformation is similar to the Craig and Bampton

CMS method. Note that the two transformations are identical in form with the transformation

matrix being generated differently, i.e., the former (Craig and Bampton) is by normal modes and

the latter (Lanczos) is by static response. Since the Lanczos vectors are computed from a recur-

rence formula, this eliminates the need to solve the eigenvalue problem for the equations of motion

of the interior coordinates.

Substituting equation (11) into equation (2) and premultiplying the resulting equation by the

transpose of [TL], a set of reduced equations of motion of the substructure is obtained in the form:

I ,,I Iq,,I[ML] + =ltx,,t ,
(12)

11



where

and

/t-,i,t[MH = [TL]rlMIITL! = __

LMLnq

tKLI= [r,lrt/qtT,] = [ K h]
J

[ILqq] = unity matrix

[M_b] = [L,,]r[Mii][G] + [L,]r[Mib]

[MLhq] = [G]T[Mii][L,] + [Mib][L,]

[MLhh] = [G]T[Mii][G] + [G]r[Mih] + [Mbi][G] + [Mbb]

[ELqq] = [L,,ITtKiiI[L,,]

[KLqh] = [L,,]T[Kii][G] + [L,,]T[Kn,]

[KLI,q] = [G]T[Kii][L,,] + [KI, i][L,,]

[/_Ll,/,! = [G]r[Kii][G] + [G1TIKib] + [Khi][G] + [KI, hl

It should be noted that the off diagonal terms of the reduced stiffness matrix are not zeros as in the

case of the Craig and Bampton reduced stiffness matrix. Like the Craig and Bampton method, the

reduced equations of motion are in mixed vector and discrete coordinates.

C. Martin Marietta's Transient Response Method with

Changing Boundary Conditions

A method of dealing with the transient response for the liftoff of the space shuttle vehicle

used by Martin Marietta [21] is presented in this section.

The uncoupled equations of motion of the vehicle and launch pad for the shuttle system

shown in figure I can be written as:

12



I0 I ilL I ill "l (13)

where the subscript v refers to the vehicle (space shuttle system) and p refers to the pad (MLP). If

the interface nodal coordinates between the pad and vehicle are assumed to be massless, then the

coupling stiffness represents the only physical attachments between the vehicle and pad. The jus-

tification for this is that the elastic forces at the attachments are assumed to be much larger than

the inertia forces. Equation (13), with the added coupling stiffness overlaying the interface DOF for

the vehicle and pad, can then be written as:

(14a)

A

,,','here IK,] is the coupling stiffness between the vehicle and pad interfaces. The physical signifi-

cance of the coupling stiffness is to constrain the contact DOF to move together. If equation (14a)

is rewritten separating the interior DOF from the boundary (interface) DOF. it becomes clear how

the coupling stiffness matrix couples the two structures together at the interface coordinates.

Rewriting equation t l4a) as:

Mvii Mvib 0 0

Mvbi Mvbb 0 0

0 0 Mpii Mt,ib

0 0 Mm, i MPI,/,

Xvi

3?vb

+

Kvii

Kvt_i

0

0

m

0 Kpi i Kpi b

0 Kphi Km, h

+

0 0

o gc

0 0

0 -Kc

0 -Kc

oo]o Kc

)f Vi

XVb

,..

Xpi

Xl'h

Fvi(t)

Fvt,(t)

0

0

(14b)
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wherexvi and xm are the interior coordinates, Xvh and Xpb are the boundary (interface) coordinates,
and

A

[K,] =

m i

0 0 0 0

0 K¢ 0 -K¢

0 0 0 0

0 -Kc 0 Kc

The submatrices K,. are diagonal representing the stiffnesses between interface coordinates. The

coupling stiffness matrix for the space shuttle can be represented by the bolt stiffnesses between the

vehicle and pad. In figure 2, the bolt stiffnesses used in this study are K_ = 31 x l06 lbf/in for

x-directign, K; = 4× 106 lbf/in for y-direction, and K. = 5.5x l0 t' lbf/in for the z-direction. The

same stiffness values are used for both the vehicle and pad sides. This means a 6-DOF stiffness

matrix per contact point. A total of eight contact points are between the space shuttle vehicle and

the MLP. Therefore, the coupling stiffness matrix is 48 by 48. The coupling stiffness matrix has

the same form as a single spring matrix with 2 DOF. For example, in the x-direction at one attach-

ment point, the coupling stiffness matrix has the form:

[K,.,.] =

The use of a coupling stiffness matrix has the advantage of allowing the vehicle to separate from

the pad. This is accomplished by zeroing out the relevant attachment stiffness values in the
coupling stiffness matrix [K,.I after the contact forces have gone into tension. This will become

clearer after the iteration method is presented.

An eigen analysis of equation tl3) results in the eigenvalues and eigenvectors of the vehicle

and pad. A transformation of the.coordinates can be written in terms of the eigenvectors as

follows

where

(15)

= I,, ,
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,t,,_r,t,,, = _ ,

,t,_,a,, '

and 1,. and I t, are unity matrices. Substituting equation (15) into equation (14) and premultiplying

the resulting equation by the transpose of the transformation matrix given by equation (15) gives
the set of uncoupled differential equations:

0 Fv(T)

0],[,:,01_if IK(-I _1,

(16)

A

where [Kc] is the coupling stiffness matrix.

The coupling stiffness term on the right hand side of equation (16) represents the contact

forces between the vehicle and pad. If the contact force is denoted as {F,.}:

IF,.} = -

Lo _I_/, Lo ,I,_, ,ll,
(17)

and the applied forces are denoted as:

{_,,} =
(18)
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After substituting equations (17) and (18) into equation (16) and making use of the orthogonality

condition and then dropping the subscripts v and p for simplicity, equation (16) can be rewritten

as:

9

Cli+ 2_:_O/lj + toj-qj = FAj + F,j , ( !9a)

for (j = ! ..... p+v), where 42 is the modal damping ratio. Equation (19a) can be simplified further

by dropping the subscript j and this gives:

q + 2_toq + to2q = FA + F¢ , (l 9b)

for (q = ql .... ,qp+v). At a given time t = to, the initial conditions of the structure are known or

can be computed. Initial conditions qo,qo can be obtained from the coordinate transformation given

by equation (15). The applied forces {Fao} are known at time t=to. The initial contact forces {F,.o}

are computed from the coupling stiffness matrix and the initial pad displacements. If the applied

force (i.e., Fa+F,.) is approximated by A +B'r, then equation (19) can be written as:

q + 2g_toq + to2q = A + B'r (20)

for (q = qt ..... qp+,,).

Integrating equation (19) over the time interval of h where t = to+h and comparing equa-

tion (20) with equation (19b) at r = 0 the coefficient A is determined,

A = FAo+Fco , (21)

and for -r = h the coefficient B is determined,

B - Fa - FAO + F,.- F,.o

h h
(22)

A closed-form solution of equation (20) can be obtained in terms of A and B. For those q's with

to = 0 (rigid body motion) the solution is:
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_1"= A+Bx

_1 = A'r + B-B-_+ C I

A,r 2 n.:3
q - t-- +C0"+C2 ,

2 6
(23)

where

CI = qo and C2 = t_o ,

and for those q's where to _ 0 the solution is:

q = e-_m[Kz cos mac+K2 sin toac] +K3+K4r ,

q = t-_to_e [Ki costoa'r+K2 sin (oac]+e [-Klto d sin toac+K2to a cos toac]+K4 ,

-_to-r
//' = (-[to)2e-_[Ki cos toac+K2 sin toax]+2(-_to)e [-Kito,/ sin toac+K2tOd cos _ac]

--e-¢_[KitOd COS toac+g2(oj sin toac] , (24)

where

1 A
KI = (qo-to2_ -2_to

K2 = (qo + _toKi - K4)

K3 : (A-2_toB_)
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K4- B
to 2

q = ql,....qp+_, _ = _l....._p+_, _ = _l....._p+_

The iterative procedure begins with an estimate of the contact force at t = to + h. Coeffic-

ients A and B can then be computed from equations (21) and (22). The coefficients are then used

in equation (23) or (24) to obtain an estimate of the {q}'s. Contact forces between the vehicle and

pad can then be computed. A check of the vehicle-to-pad separation is made and, if the vehicle

has separated from the pad (i.e., bolt loads are in tension), the coupling stiffness is modified. The

{q}'s along with the [/_c] stiffness matrix are then used to compute new values of the B coefficients

(i.e., contact forces). The new B coefficients are then used again in equation (23) or (24) over the

same time interval for a better estimate of the {q}'s. The process is continued until the change in

contact force {F,.} is within a specified tolerance. The procedure described has been used to simu-

late the space shuttle liftoff transient response and also some barge docking impact transient

response ;inalysis with success by Martin Marietta [21].

D. Proposed Transient Response Method With Changing Boundary Conditions

The proposed method is presented for a general structure and can be readily applied to the

space shuttle liftoff transient response analysis. A transient response method dealing with the

effects of changing boundary conditions for linearly coupled substructures [23] is proposed. The

proposed method is applicable to any number of substructures as will become evident. In the

following derivation only two substructures will be used. The term linear refers to the substructures

which behave linearly and to all the forces, damping, applied, and interface, that are linear func-

tions of the coordinate variables. The substructure equations of motion are assumed to be reduced

by one of the CMS transformations in section II, either by equation (5) or by equation (11).

A structure can be divided into two substructures as shown in figure 4. The equations of

motion for the undamped substructures A and B in matrix forms are respectively:

t! tItltl[MAI xA xA FA 0+ [KA] = +

_at xAi FAI F!

(25)

l ix i t0I+ [Ks] = + (26)

)ira xm Fat FI
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Substructure B

{_,(t)}
Applied Forces

Figure 4. Free-body diagram of two substructures.

19



In the above equations

represent the interface forces acting on the interface coordinates of each substructure, and

Fa+ Fm

are the applied forces. The subscript I refers to the interface coordinates. The compatibility con-

ditions for the substructures shown in figure 4 can be written as:

{.rat} -= {xnt} (27)

and

{FI} A A- {F,}R = 0 (28)

For simplicity, the interface forces will be designated as {Ft}, i.e., {FI}A = --{Ft}R = {Ft}.

Equations (25) and (26) are inertially and elastically coupled. To uncouple the equations, the
normal modes of the substructures are computed and then a modal transformation is used. This can

be expressed as:

I XA l

Ltt

= [_al {qa} (29)

and

I XB I
.lfBi

= [_B] {qn} (30)
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This transformation will change the mixed coordinates of equations (25) and (26) into modal coor-

dinates which are much 6asier to integrate from a computational sense. This step is similar to that

done in the previous section. It is at this point that damping can be introduced into the equations

of motion. In the numerical examples presented in section IV, the modal damping ratios _ are

assumed to be constant for all frequencies and for both substructures in the formulation. Then

equations (25) and (26) can be rewritten as:

'OAITI +,OA Tt01 ,(31)

and

{/1B}+ 2_[¢oBl{qB} + [to2]{qB} = [_z] r (32)

Within each time interval of integration step the interface forces between the substructures in

equations (31) and (32) are treated like applied forces. If equations (31) and (32) are solved for in

a time step manner, then an approximation can be made for the interface forces by the use of a

power series which is valid for a time step At. This is expressed as:

{Ft} = _, G_(t- ti) ) ti<_t<_ti + At . (33)
y=0

where Gj are unknown coefficients to be determined. A series is expected to converge rather rapid-

ly for the size of At normally used in the integration of equations (31) and (32). It is sufficient that

four terms of the series are kept, then the interface forces can be written as:

{F/} = {Go} + {Gi}(t- ti) + {G2}(t- ti) 2 + {G3}(t- ti) 3 , (34)

for ti<_t<_ti+ At. Substituting equation (34) into equations (31) and (32) results in the equations:

+ {G2}(t- ti) 2 + {G3}(t - ti) 3) (35)
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and

+ {G2}(t - ti) 2 + {G3}(t -/i)3)

+ {Gt}(t - ti)

(36)

for ti<<.t<_ti+ At. The * superscript used on the substructure modes is defined as follows for
substructures A and B:

(F,)

= =
F/

Using superposition of solutions, the modal coordinates of the substructures can be split up into

two parts:

{qa} --- {qa,} + {qA2} , (37)

and

{qA} _ {qtz,} + {qB2} (38)

Substituting equations (37) and (38 _) along with their derivatives into equations (35) and (36) results

in the following four sets of equations:

{#,,,}+2rd_oA]{#_,}+l_o_](q_,}= [¢'A]i i+
(F,_,J

IdP*lr{Go} , (39a)

{//A2}+ 21_[oJa]{qa2} + [OJ2A]{qA2}= [_*]r({Gl}(t--ti)+ {G2}(/- ti)2-F{G3}(t- ti)3) , (39b)
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[F,,,)
(39c)

{_n2]" + 2_[ton]{t_nz} + [to2]{qnz} = -[_lr({GI }(t - ti) + {G2}(t - ti) z + {G3}ft - ti) 3) (39d)

Set the initial conditions for equation (39) as follows:

{qal(ti)} = {qA(ti)} {qa2(ti)} = {0} , (40a)

{qAl(ti)} = {qA(li)} {qA2(li)} = {0} , (40b)

{qBl(ti)} = {qB(ti)} {qR2(ti)} = {0} , (40c)

{0Bl(ti)} = {t_R(ti)} {OB2(ti)} = {0} (40d)

Substituting t = ti into equation (34) gives the first term in the power series as:

{Go} = {Ft(ti)} (41)

Therefore, a closed-form solution of equations (39a) and (39c) can be obtained at h+. = ti+ At

using the initial conditions of equations (40) and (41). Thus, it allows one to compute the follow-
ing quantities,

{qal(ti+ I)} ; {qAl(ti+ ,)} ; {qAl(ti+ _)} , (42a)

{qR,(ti+ i)} ; {glBl(ti+ I)} ; {qBl(li+ l)} , (42b)

which will be needed in equation (47).

Equations (39b) and (39d) can be solved in a closed-form solution using the initial con-

ditions in equation (40), however their solutions contain the unknown coefficients {Gi}, {G2}, and

{G3}. By assigning a unit value to the coefficients one at a time and solving equations (39b) and

(39d), a solution is obtained in terms of the coefficients. The results can be written in matrix
notation as:
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{,t.,_-(t,+, )} = lC-_,,]{c, } + [C,,, ,]{c_,} + l_Y,,,.,]{c.,} .

{,}x,_tt,, ,)} = lC-a__,l{G,}+ [U'A:21{G_,}+ [C'A23]{G3}

{,;iA2tt_+ ,)} = I_A3,1{G,} + I_,:,321{G2}+ [C'-a331{G3} (43)

and

{q.2U,+ ,)} = IC--A,,I{G,} + lC--_,21{G2}+ l_'n,:]{6.,}

{,}.2(t_+, )} = I_2,1{c ,} + [(_221{c,2}+ [cR:.,1{c:}

{_iR:U,+ ,)} = lC_, ]{G,} + IU..,2I{Gz} + [UR::I{G:} (44)

Each element in the [_'] matrices, which is referred to as the interface compatibility matrix.

represents the solution to an assigned unit value of the coefficient.

The coefficients {G_}, {G2}, and {G3} can be evaluated from the interface compatibility con-

dition stated in equation (27) at the end of each time step At. It gives:

{Xal(ti+ I)} = {xm(ti+ I)} , (45a)

{-;cAM,+ i)} = {.fm(ti+ i)} , (45b)

{-_Al(ti+ I)} = {.iCBl(ti + I)} (45c)

Equation (45) can be expressed in terms of the unknown coefficients by using the modal trans-

formation given by equations (29) and (30) along with equations (37) and (38). Thus, equation (45)

can be written as:

[¢a*]({qal(ti+ I)} + {qa2(ti+ I)}) = [¢B*l({qBt(ti+ i)} + {qB2(ti+ i)}) , (46a)

[dPA*l({gla,(ti+ ,)} +{Cla2(ti+ ,)}) = [¢t_*l({onl(ti+ ,)}+{ilnz(ti+ ,)}) (46b)
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[¢_A*]({qAl(li+ I)}+{qA2(ti+ 1)}) = [_R*]({qBj(ti+ I)}+{/1B2(ti+ I)}) (46C)

Rearranging equation (46) so that the terms due to response of the externally applied forces on the
left hand side, yields:

[dikA*]{qAl(ti+ I)}-- [_B*l{qn_(ti+ _)} = [_B*]{qB2(t;+ _)}-- [di)A*]{qA2(ti+ I)} , (47a)

IliA* ]{qAl(ti + I)} -- [_B*]{qsl(ti + ,)} = [_A* ]{qB2(ti + I)} -- [(I)A* ]{qA2(ti + I)} (47b)

[_])A*]{qAl(ti + I)} -- [(:I)B*]{_BI (ti + l)} = [_B*]{_B2(ti + I)} -- [(IDA*]{qA2(ti + I)} (47c)

The terms on the left hand side which represent the difference in displacement, velocity, and

acceleration of the two substructures at their interface due to externally applied forces can be

obtained from equation (42). The left hand side terms of equation (47) can be rewritten as:

{(_(ti+ I)} : [(I)A*]{qAl(ti+ I)}--[(I)B*]{qB_(ti+ _)} , (48a)

{_)(ti+ I)} = [C])A*]{qA,(ti+ I)}--[¢])B*]{qBl(ti+ I)} , (48b)

{_(/i+ 1)} = [dPA*]{qAl(ti+ I)}--[dPB*]{q'Bl(ti + I)} (48c)

Substituting equations (43), (44), and (48) into equation (47) gives:

{a(.,+,)} = (l¢._1[_., ,]- [¢'_I[C?A,,]){G,}

+ ([4't1IC--_,2]-[¢'_][_A,2]){G2}

+ (Iqb_][C,,3] - [fIIA][CAI3]){G3} (49a)

{a(r,+,)} = (I_I[G_.,J-[q_II_'A2,1){G,}

+ (lq_i_IIC--R221-[([_)A]I_22]){G2}

+ ([(])/_1[_'A23]-[_][(_A23]){G3} (49b)
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{_(r,.+,)} = (FP_I[U'_3,]- IO,_11_A3,I){G,}

+ (14_11(7A321-l_,_llUa3d){G2}

+ ([O'1[_'n33]- [O,_][G331){G3} (49c)

Equation (49) can be combined into a single matrix equation as:

{8(ti + I)}

{8(t_+,)}

IC', I] [C,2I [C,3]

IC',_,I IC'_,2] 1(231

[c-_,] [732] [733]

_{G,}
{G,}

! {G3}

(50)

or

I {a(t;+,)} I
{8(t_+,)} = [_]

{8(t;+ ,)}
{GI} 1

{G2}

{G3}

(51)

E

By inverting the interface compatibility matrix [CI. the unknown coefficients can be computed as:

{G,}

I
{G2} = [UI-'

{a(ti+ i)}

{a(t,, ,)} (52)

The si:c of thc intcrlace compatibility matrix is directly related to the number of interface coor-

dinate,, between the substructures and the number of terms kept in the power series that approxi-

mates the interface forces. Thus. the interface compatibility matrix will be relatively small and can

easily be inverted. It is important to note that the interface compatibility matrix does not change in

time as long as the same time step At is used. Theretore. the interface compatibility

matrix and inversion need to be computed only once at the beginning of the integration.

From the development of these equations, it is obvious that a change in boundary conditions

can be pertormed during the integration of the equations of motion. This change can be accom-

plished for the liftoff analysis of the space shuttle vehicle by a modification of the compatibility
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equation given in equation (52). As a constraint is released, the interface forces go to zero and the

interface displacement, velocity, and acceleration become unequal. Thus, during the integration of

the equations of motion, the inverted interface compatibility matrix [C] can be changed by zeroing

out the row and column of the released interface DOF. This approach will be used to simulate the

liftoff transient analysis of the space shuttle in section IV.

III. COMPUTATIONAL PROCEDURE

In this section, computational procedures are developed which make it more convenient for

implementing the reduction transformations of the two CMS methods presented in section II. A

computational procedure for the proposed transient response method with changing boundary con-

ditions is also developed. Part of the procedure for the proposed method has been presented in
reference 23.

A. Computational Procedure for the CMS Methods

First, the models of the substructures must be reduced in size for computational purposes.

This is accomplished by using one of the CMS methods described in the previous section. To

better understand the reduction procedure, a series of steps are listed for both of the CMS methods.

Steps I through 3 are identical for both CMS methods. The steps are:

Step 1 -Partition the mass and stiffness matrices into interior and boundary (interface)
coordinates.

Step 2 - Compute the [G] Guyan transformation from equation (4).

Step 3 - Form CMS transformation matrix of equation (4).

For the Craig and Bampton CMS method, the following steps are followed:

Step 4 - Compute the normal modes for the fixed interior coordinates of the substructures

and normalize the modes with respect to the interior mass matrix.

Step 5 - Truncate the eigenvectors to a specified cutoff frequency that gives satisfactory

results to the transient response.

Step 6 - Form transformation [Tc;_] of equation (5) using truncated eigenvectors.

Step 7 - Compute reduced mass and stiffness matrices using [Tcn] from step 6, i.e., per-

form matrix triple product as in equation (6).
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For the Lanczos CMS method the following steps are followed:

Step 4 - Compute n Lanczos vectors of the interior coordinates of the substructures using

equations (7) through (10).

Step 5 - Form transformation of equation (! 1) using the Lanczos vectors.

Step 6 - Compute reduced mass and stiffness matrices using [To] from step 5, i.e., perform

matrix triple product as in equation (il).

B. Computational Procedure for the Proposed Transient Response Method

The proposed transient response method computational procedure is presented next. This is

given also as a list of steps to help in its implementation:

Step I - Compute the normal modes and frequencies of the reduced substructure from either

step 7 or step 6 depending on which CMS method has been used.

Step 2 - Select an integration time step At that is consistent with the highest substructure

normal frequency.

Step 3 -Compute the interface compatibility matrix [C], as defined in equation (51).

Step 4 - Compute the inverse of the interface compatibility matrix [_']-t.

Step 5 - Set ti = integration start time, with i = I.

Step 6 - Compute initial conditions at integration start time given in equations (40) and

(41).

Step 7 - Set t, + _ = I i + At.

Step 8 - Compute the response of substructures due to applied loads at t = t,+_ by solving

equations (39a) and (39c).

Step 9 - Compute difference of interface displacements, velocities, and accelerations due to

applied forces at t = ti _ i using equation (48).

Step 10- Compute the coefficients G_, G2, and G3 at t = ti+_ using equation (52).

Step II -Compute the response of the substructures due to the interface forces at t = ti _

using equations (43) and (44).

Step 12 - Compute the total response of the substructures at t = t;+ ] using equations (37)

and (38).
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Step13 - If a change in constraint or compatibility is necessary, modify the inverted

interface compatibility m_trix.

Step 14- Compute the interface forces using equation (34) at t = ti+ t.

Step 15 - Reset the initial conditions for the next time step using equations (40) and (41).

Step 16 - Set ti = t_+ _ and return to step 7 if tg equals the end of integration time, then

stop.

All of the normal modes and frequencies of each substructure done in step I of the proposed

transient response method should be computed if computer capacity is available. This will result in

more accurate internal loads on the substructures. The loss of accuracy will then be limited to only
the reduced CMS method used.

The computer algorithms for the two CMS methods are listed in the appendix. The

proposed transient response method with changing boundary conditions is also listed in the

appendix. All the computer routines have been written in FORTRAN computer code. The

FORTRAN library called FORtran Matrix Analysis (FORMA) [27] is used throughout all of the

algorithms developed.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented. One example uses a simple canti-

levered beam with an applied force at the free end of the beam. The other example uses transient

response analysis of the space shuttle liftoff from the MLP. The simple beam example is used for

the purpose of checking out the computer algorithms for the CMS methods and the proposed

transient response method. The liftoff transient response analysis includes the effects of changing

boundary conditions as the vehicle goes from a fixed-base configuration to a free-flight configura-

tion. All computations have been performed on a Cray XMP computer.

A. Simple Beam

A simple cantilevered beam is selected for the check out of the proposed transient response

method and algorithms. The beam is also used to study and check out the Lanczos CMS method

and algorithms. The cantilevered beam with an applied tip torce is shown in figure 5, along with

its material and geometric properties. The beam was modeled using the finite element method. It

was first broken up into two substructures (one free-free and the other cantilevered) of equal

length. Finite element mass and stiffness matrices are then generated for the two substructures. A

total of 50 DOF for the free-free substructure and 48 DOF for the cantilevered substructure are

used. The finite element representation of the beam is shown in figure 6a. Finite element mass and

stiffness matrices are given in figure 6b. Reduction of the substructures is performed using the

CMS transtormations of sections A and B of section II. The substructure interface DOF are kept in
discrete coordinates.
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Figure 6a. Two-dimensional finite element model of cantilevered beam.
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Figure 6b. Element mass and stiffness for the cantilevered beam.
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For the proposed transient response method, the accuracy of eigenvalues used to represent

the beam is important for satisfactory results. Therefore, the discrete beam model eigenvalues

(frequencies) are compared to the reduced beam models for the two CMS methods. Frequency

versus mode number comparisons are shown in figures 7 through 10 for several reduced models of

the free-free and cantilevered beams. From figures 7 through 10 it is seen that the Craig and

Bampton reduced models more accurately represented the original discrete model. The Lanczos

reduced models consistently lost accuracy depending on the number of vectors retained in the

reduction transformation. For the Lanczos reduced models to achieve the same accuracy in fre-

quency as the Craig and Bampton reduced models, more Lanczos vectors need to be generated for
the reduction transformation.

To check out the algorithms of the proposed method, a transient response analysis of the

beam substructure models is performed. The transient response uses both the reduced Craig and

Bampton CMS models and Lanczos CMS models. A closed-form solution of the discrete finite

element model is computed for comparison. The finite element discrete model consists of the mass

and stiffness matrices of the two substructures coupled together using the direct stiffness method. A

eigen analysis of the discrete beam model is performed. Only modes up to 100 Hz are retained and

used in the closed-form transient response analysis. The length of the transient response analysis is

set to a time interval from 0.0 to 2.0 s and an integration time step of 0.001 s is used. Damping is

neglected for this study. The displacement at the end of the beam (tip of the beam) and the beam's

interface moment (between substructures) are computed for comparison studies. The tip dis-

placement is plotted versus time in figure 11 and the interface moment is plotted versus time in

figure 12. From figures 11 and 12 it can be seen that there is very little difference between the

Craig and Bampton CMS and Lanczos CMS models. The differences that are present can be

attributed to the time step used in the numerical integration. One characteristic of the Lanczos

CMS reduced model is a bigber frequency for the last mode. Tbus, for good results a smaller time

step is needed in the integration process. The Craig and Bampton method has the advantage of

picking a cutoff frequency and thus limiting the size of the time step of integration. The analyst

must choose the number of vectors to be generated for the Lanczos CMS method without prior

knowledge of what the last modal frequency will be.

B. Transient Response of Shuttle Liftoff

A study of the proposed method using Lanczos CMS models versus Craig and Bampton

CMS models has been per/brined. Computer usage is studied for the CMS reduction methods and

lot the proposed transient response method. Described in the following sections are the models,

torcing functions, and results of the simulation. The results are compared with the iterative

transient response method used by Martin Marietta.

1. Models

Free-free models of the substructures that make up the total liftoff space shuttle vehicle are

obtained from Rockwell International [24]. The models were in a mixed discrete and modal form.

The total liftoff vehicle model includes the orbiter (excluding a payload), ET, and two SRB's. The

individual substructure models are coupled together using the direct stiffness method. The size of
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the total iiftoff model has 1,725 DOF. An MLP model is obtained from NASA Johnson Space

Center [25]. It has 109 DOF and is in discrete coordinates. The MLP is reduced using the Craig

and Bampton CMS method using a cutoff frequency of I00 Hz. The same MLP model is used for

all the simulations. Liftoff vehicle models are reduced using both the Craig and Bampton and

Lanczos CMS methods. Four Craig and Bampton liftoff vehicle models and three Lanczos liftoff

vehicle models have been studied. Table 1 gives the sizes of the reduced models. A comparison

between the computed eigenvalues of the reduced Lanczos CMS vehicle models and the unreduced

vehicle model has been performed and is shown in figure 13. The results are similar to what was

observed previously in the simple beam model. The more vectors retained in the Lanczos trans-

formation the more accurate the eigenvalues of the reduced model.

Table I. Sizes of reduced vehicle models.

Craig and Bampton

Cutoff Frequency Size

70 Hz 664 dof

50 Hz 495 dof

35 Hz 365 dof

20 Hz 206 dof

Lanczos

Vectors Retained Size

300 vectors 324 dof

100 vectors 124 dof

10 vectors 34 dof

Following the steps outlined in section III, an eigen analysis of the reduced models is

accomplished next. All eigenvalues and eigenvectors are kept for the reduced models in table 1.

Damping is neglected in the transient response analysis for both the vehicle and MLP models. A

time step of 0.001 s is used in all the transient response analyses using the proposed method. For

the iterative method a time step of 0.0001 s is needed for convergence of solution.

2. Forcing Functions

Forces acting on the space shuttle vehicle during liftoff include gravity, wind loads, space

shuttle main engine (SSME) thrust forces, solid rocket motor (SRM) ignition overpressure loads,

SRM thrust and pressure loads, and foot pad loads. There are over 300 sets of these forces which

are developed by Rockwell International [26]. The set of forces used in the transient response

example is designated LR2019. These forces applied to a free-free vehicle model with the foot pad

loads simulating the effect of the MLP during liftoff are normally used for payload liftoff loads

response analysis. For this simulation, the pad loads are zeroed out of the forcing functions since

they are part of the results. A total of 166 applied forces per 680 time points are used in the liftoff

siimulation. The forcing functions are interpolated using the integration time step before they are

applied in the integration of the equations of motion. The SRB's are ignited at t = 6.548 s, there-

fore, the transient response analysis of the reduced models is accomplished over the time interval
of 0to 7.0 s.
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3. Results

MLP to vehicle . _terface forces and displacements are computed for the reduced models

shown in table 1. To verify the proposed transient response method, the same reduced model

(Craig-Bampton 70 Hz) is used for the iterative method and the proposed method. Figures 14 and

15 show the interface forces of posts 1 and 4 using both methods. It is seen that the proposed

method compares very well with the iterative method. The differences in results that do appear in
the two methods shown in figures 14 and 15 (especially in the y and z directions) can be attributed

to the coupling stiffness matrix used to represent the holddown bolts and to the separation criterion

in Martin Marietta's iterative method. Martin Marietta's separation criterion is to release the contact

point as soon as the holddown bolt goes into tension. The holddown bolts are modeled using the

coupling stiffness matrix, therefore, the bolt loads go into tension when the contact points separate.

This accounts for post-4 interface loads computed by Martin Marietta's method going to zero

before the proposed method as shown in figure 15.

A summary of the computer time needed for the reduction of models and the transient

response methods is given in table 2. A substantial savings in computer time is shown for the

Lanczos reduced models over that of the Craig and Bampton reduced models. It is observed that

the iterative method used considerably more computer time than the proposed method for the same

solution. This can be attributed to the smaller time step required and also due to the number of

iterations needed for solution convergence.

Figures 16 and 17 show the interface forces for posts 1 and 4, using the proposed method.

Different reduced Craig and Bampton CMS models are used for comparison studies. It is noted that

good results can be obtained using the smaller Craig and Bampton CMS vehicle model (20-Hz

cutoff frequency). A closer look at the interface loads during changes in the boundary conditions is

shown in figures 18 and 19. Only for post 4 are there any large deviations in loads. These

deviations can be attributed to the cutoff frequency used on the reduced models.

The reduced Lanczos vehicle models are compared against the Craig and Bampton (70-Hz

cutoff) vehicle model. Interface forces for posts 1 and 4 are shown in figures 20 and 21. Good

results are obtained of the interface forces for the Lanczos models. After SRB ignition, however,

several deviations are noticed. Shown in figures 22 and 23 are the interface forces during SRB

ignition and subsequent liftoff. The smaller Lanczos model (10 vectors) was not able to respond to

the applied loads at post 4 as well as the higher fidelity models.

Displacements at the interface of post I are computed and are shown in figures 24 through

26 lot the Craig and Bampton (70-Hz cutoff) model. The x-direction displacement (direction of

flight) in figure 24 shows the MLP and vehicle connected right up to SRB ignition. After SRB

ignition the two structures are separated. From the data it appears that the two structures reconnect

a short time after SRB ignition. It is possible that this reconnection or chatter of the two structures

is going on, however, the present routine does not deal with the reconnection event.
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V. CONCLUSIONS

A proposed method has been presented for the liftoff transient response analysis of the

space shuttle vehicle using reduced models. The proposed method is validated with the numerical

examples of a simple beam problem and the liftoff simulation of the space shuttle vehicle. Several

different reduced models of the space shuttle liftoff vehicle model (four by the Craig and Bampton

CMS method and three by the Lanczos CMS method) have been analyzed and studied. The follow-

ing observations are made for the simple beam problem:

!. A beam model reduced by the Craig and Bampton CMS method gives accurate

frequencies.

2. A beam model reduced by the Lanczos CMS method gives accurate frequencies depend-

ing on the number of Lanczos vectors computed.

3. The proposed transient response method gives good results for the beam problem

analyzed, The integration time step is critical for accurate results. Therefore, the number of modes

or vectors used to reduce the beam model is important, since this determines the cutoff frequency

which then determines the integration time step.

The transient response analysis of the space shuttle vehicle during liftoff resulted in the following
observations and conclusions:

I. The larger complex space shuttle liftoff model reduced by the Lanczos CMS method

gives accurate frequencies depending on the number of Lanczos vectors computed.

2. A substantial savings in computer time is gained for the reduction of the space shuttle

liftoff model using the Lanczos CMS method over that of the Craig and Bampton CMS method.

3. Computer time increased substantially when a large number of Lanczos vectors were

computed. This is due to input/output computer time increasing.

4. Comparisons of the proposed transient response method for the space shuttle vehicle with

the iterative method used by Martin Marietta have been made. The following conclusions are
noted.

a. The differences observed between the two methods in the lateral directions and during

separation can be attributed to the coupling stiffness matrix and the separation criterion used in the

iterative method by Martin Marietta.

b. The proposed transient response method can save computer time over the iterative

method used by Martin Marietta, since the iterative method requires a smaller time step and

numerous iterations for convergence.
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5. The proposedtransientresponseanalysisusing reducedspaceshuttlevehiclemodelsby
the Craig and BamptonCMS methodgives goodresultsfor the interfaceloads,even for reduced
spaceshuttlemodelsusinga 20-Hz cutoff frequency.

6. The proposedtransientresponseanalysisusinga reducedspaceshuttlevehicle modelby
the LanczosCMS methodis shownto give adequateinterfaceloadsascomparedto the reduced
modelsby the Craig and BamptonCMS method(70-Hz cutoff frequency),even for the smaller 10
Lanczosvector model.

7. The interfaceloadscomputedusingmodelsthat havebeenreducedby the LanczosCMS
methodhave lessfrequencycontentin their responsesas comparedto the modelsreducedusing the
Craig and BamptonCMS method.

8. As the vehicle leavesthe pad the possibility of chatteror reconnectionsneedsto be
investigated.It appearsthat, basedon this analysis,this phenomenondoesoccurduring liftoff.
However, it is not incorporatedin the presentspaceshuttle liftoff analysis.

Areasof possibleimprovementto the proposedmethodinclude:recontactdynamics(chatter
effect), improvedseparationcriterion that has lateral load release,and modelingof the physical
releasemechanism.Anotherconcernwhich hasoccurredon severalspaceshuttle flights is the
holddownbolts hangingup. The proposedmethodcould be modified to analyzethis phenomenon
and determineits effectson the vehicleduring liftoff separation.
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